Hyperlipidemias and Atherosclerotic Cardiovascular Disease
Course #90844 -
- Participation Instructions
- Review the course material online or in print.
- Complete the course evaluation.
- Review your Transcript to view and print your Certificate of Completion. Your date of completion will be the date (Pacific Time) the course was electronically submitted for credit, with no exceptions. Partial credit is not available.
In the United States, more than 11% of the population 20 years of age and older have abnormally high concentrations of lipids in the plasma. It is well established that hyperlipidemia is associated with increased cardiovascular (CV) morbidity and mortality. Furthermore, it is equally well established that reduction of plasma lipids has a beneficial effect on CV health in individuals potentially at risk and reduces occurrence of new events in patients that have experienced prior CV disease. This course will review pathophysiologic and epidemiologic studies that establish the role of dyslipidemias in the development of vascular pathology. In addition, an updated approach to the pharmacologic mechanism of action of lipid-lowering drugs will be discussed, including the therapeutic benefits of pharmacologic and nonpharmacologic approaches to lipid control. A review of guidelines for the evaluation of risk factors associated with hyperlipidemias will be provided, and current evidence-based guidelines for the therapy of hyperlipidemias will be thoroughly discussed. Finally, the importance of patient education, compliance to therapy, and lifestyle changes will be emphasized.
- INTRODUCTION AND EPIDEMIOLOGY OF ATHEROSCLEROTIC CARDIOVASCULAR DISEASES
- ETIOLOGY OF ATHEROSCLEROSIS
- RISK FACTORS FOR HYPERLIPIDEMIA
- AN OVERVIEW OF LIPIDS
- AN OVERVIEW OF LIPOPROTEINS
- CLASSIFICATION OF HYPERLIPIDEMIAS
- APPROACHES TO CLINICAL MANAGEMENT OF HYPERLIPIDEMIAS
- LIFESTYLE MODIFICATION
- LIPID-LOWERING MEDICATIONS
- CLINICAL ASSESSMENT OF RISK ASSOCIATED WITH HYPERLIPIDEMIAS
- CLINICAL GUIDELINES FOR THE TREATMENT OF HYPERLIPIDEMIAS
- CONCLUSION
- RESOURCES
- Works Cited
- Evidence-Based Practice Recommendations Citations
This course is designed for physicians, physician assistants, nurses, and pharmacy professionals who may intervene to limit the effects of hyperlipidemias in their patients, promoting better long-term health and preventing cardiovascular disease.
The purpose of this course is to provide a review of hyperlipidemia in the pathogenesis of cardiovascular disease, as well as the therapeutic benefits of pharmacologic and nonpharmacologic approaches to treatment. The objectives are to promote team-based care, foster patient awareness and shared provider-patient decision-making, and promote implementation of lifestyle changes and compliance with guideline-directed therapy for prevention of cardiovascular disease.
Upon completion of this course, you should be able to:
- Discuss the incidence, relevance, and risk factors for atherosclerotic cardiovascular disorders and hyperlipidemia.
- Describe lipid synthesis and metabolism, types of lipoproteins, and various lipid profiles
- Outline approaches to assessing patient risk and managing hyperlipidemias.
A. José Lança, MD, PhD, received his Medical Degree at the University of Coimbra in Coimbra, Portugal, and completed his internship at the University Hospital, Coimbra. He received his PhD in Neurosciences from a joint program between the Faculties of Medicine of the University of Coimbra, Portugal, and the University of Toronto, Toronto, Canada. He was a Gulbenkian Foundation Scholar and received a Young Investigator Award by the American Brain & Behavior Research Foundation.
Dr. Lança participated in international courses and conferences on neurosciences. He has contributed to a better understanding of the mechanisms underlying the ontogenetic development of the brain opiatergic system. As a research scientist at the Addiction Research Foundation (ARF) in Toronto, he initiated research on the functional role played by dopaminergic cell transplants on alcohol consumption, leading to the publication of the first research reports on cell transplantation and modulation of an addictive behavior. Subsequently, he also investigated the role played by other neurotransmitter systems in the limbic system and mechanisms of reward, co-expression of classical neurotransmitters and neuropeptides and potential role in neuropsychiatric disorders.
He is an Assistant Professor in the Department of Pharmacology and Toxicology at the Faculty of Medicine and at the Faculty of Dentistry at the University of Toronto, where he lectures and directs several undergraduate and postgraduate pharmacology and clinical pharmacology courses. He was the Program Director for Undergraduate Studies in the Department of Pharmacology and Toxicology of the University of Toronto. He has developed clinical pharmacology courses for the Medical Radiation Sciences and Chiropody Programs of The Michener Institute for Health Sciences at the University of Toronto.
Dr. Lança’s commitment to medical education started while a medical student, teaching in the Department of Histology and Embryology, where he became cross-appointed after graduation. In Toronto, he has contributed extensively to curriculum development and teaching of pharmacology to undergraduate, graduate, and medical students.
He has authored research and continuing education in peer-reviewed publications and is the author of six chapters in pharmacology textbooks. Dr. Lança has conducted research in various areas including neuropharmacology, pharmacology of alcoholism and drug addiction, and herbal medications.
He has developed and taught courses and seminars in continuing medical education and continuing dental education. His commitment to continuing education emphasizes an interdisciplinary approach to clinical pharmacology.
Contributing faculty, A. José Lança, MD, PhD, has disclosed no relevant financial relationship with any product manufacturer or service provider mentioned.
John V. Jurica, MD, MPH
Jane C. Norman, RN, MSN, CNE, PhD
Randall L. Allen, PharmD
The division planners have disclosed no relevant financial relationship with any product manufacturer or service provider mentioned.
Sarah Campbell
The Director of Development and Academic Affairs has disclosed no relevant financial relationship with any product manufacturer or service provider mentioned.
The purpose of NetCE is to provide challenging curricula to assist healthcare professionals to raise their levels of expertise while fulfilling their continuing education requirements, thereby improving the quality of healthcare.
Our contributing faculty members have taken care to ensure that the information and recommendations are accurate and compatible with the standards generally accepted at the time of publication. The publisher disclaims any liability, loss or damage incurred as a consequence, directly or indirectly, of the use and application of any of the contents. Participants are cautioned about the potential risk of using limited knowledge when integrating new techniques into practice.
It is the policy of NetCE not to accept commercial support. Furthermore, commercial interests are prohibited from distributing or providing access to this activity to learners.
Supported browsers for Windows include Microsoft Internet Explorer 9.0 and up, Mozilla Firefox 3.0 and up, Opera 9.0 and up, and Google Chrome. Supported browsers for Macintosh include Safari, Mozilla Firefox 3.0 and up, Opera 9.0 and up, and Google Chrome. Other operating systems and browsers that include complete implementations of ECMAScript edition 3 and CSS 2.0 may work, but are not supported. Supported browsers must utilize the TLS encryption protocol v1.1 or v1.2 in order to connect to pages that require a secured HTTPS connection. TLS v1.0 is not supported.
The role of implicit biases on healthcare outcomes has become a concern, as there is some evidence that implicit biases contribute to health disparities, professionals' attitudes toward and interactions with patients, quality of care, diagnoses, and treatment decisions. This may produce differences in help-seeking, diagnoses, and ultimately treatments and interventions. Implicit biases may also unwittingly produce professional behaviors, attitudes, and interactions that reduce patients' trust and comfort with their provider, leading to earlier termination of visits and/or reduced adherence and follow-up. Disadvantaged groups are marginalized in the healthcare system and vulnerable on multiple levels; health professionals' implicit biases can further exacerbate these existing disadvantages.
Interventions or strategies designed to reduce implicit bias may be categorized as change-based or control-based. Change-based interventions focus on reducing or changing cognitive associations underlying implicit biases. These interventions might include challenging stereotypes. Conversely, control-based interventions involve reducing the effects of the implicit bias on the individual's behaviors. These strategies include increasing awareness of biased thoughts and responses. The two types of interventions are not mutually exclusive and may be used synergistically.